Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
2.
Multimed Syst ; : 1-19, 2022 Jan 29.
Article in English | MEDLINE | ID: covidwho-1661698

ABSTRACT

The pandemic caused by the COVID-19 virus affects the world widely and heavily. When examining the CT, X-ray, and ultrasound images, radiologists must first determine whether there are signs of COVID-19 in the images. That is, COVID-19/Healthy detection is made. The second determination is the separation of pneumonia caused by the COVID-19 virus and pneumonia caused by a bacteria or virus other than COVID-19. This distinction is key in determining the treatment and isolation procedure to be applied to the patient. In this study, which aims to diagnose COVID-19 early using X-ray images, automatic two-class classification was carried out in four different titles: COVID-19/Healthy, COVID-19 Pneumonia/Bacterial Pneumonia, COVID-19 Pneumonia/Viral Pneumonia, and COVID-19 Pneumonia/Other Pneumonia. For this study, 3405 COVID-19, 2780 Bacterial Pneumonia, 1493 Viral Pneumonia, and 1989 Healthy images obtained by combining eight different data sets with open access were used. In the study, besides using the original X-ray images alone, classification results were obtained by accessing the images obtained using Local Binary Pattern (LBP) and Local Entropy (LE). The classification procedures were repeated for the images that were combined with the original images, LBP, and LE images in various combinations. 2-D CNN (Two-Dimensional Convolutional Neural Networks) and 3-D CNN (Three-Dimensional Convolutional Neural Networks) architectures were used as classifiers within the scope of the study. Mobilenetv2, Resnet101, and Googlenet architectures were used in the study as a 2-D CNN. A 24-layer 3-D CNN architecture has also been designed and used. Our study is the first to analyze the effect of diversification of input data type on classification results of 2-D/3-D CNN architectures. The results obtained within the scope of the study indicate that diversifying X-ray images with tissue analysis methods in the diagnosis of COVID-19 and including CNN input provides significant improvements in the results. Also, it is understood that the 3-D CNN architecture can be an important alternative to achieve a high classification result.

3.
Int J Clin Pract ; 75(11): e14752, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1371822

ABSTRACT

AIM: In patients with COVID-19, no validated efficient treatment has been reported. Herein, we examine the effect of treatment with teicoplanin in hospitalised patients with COVID-19. METHODS: This retrospective study included 115 hospitalised patients in one medical centre. Fifty-four patients with laboratory-confirmed COVID-19 who received teicoplanin plus standard care were included in the Teicoplanin arm of this study, whereas 61 patients who were treated with standard care (SC) according to the Turkish Health Organization guidelines were included in the control arm. Patients' baseline characteristics, clinical presentation, treatment and outcomes were compared between the two groups. RESULTS: In this non-randomised control study, all baseline characteristics were comparable between the two arms and there were no significant differences in the presenting symptoms, comorbidities and clinical outcomes between the two groups. However, the mortality rate was significantly lower in the teicoplanin group than in the control group (1.9% vs 14.8%; P < .05). In addition, no adverse reactions were found in the teicoplanin arm. CONCLUSIONS: Teicoplanin administration is associated significantly with lower mortality in hospitalised patients with COVID-19 in our study. Further clinical investigations is required to verify the role of teicoplanin in COVID-19 patients.


Subject(s)
COVID-19 , Teicoplanin , Humans , Prognosis , Retrospective Studies , SARS-CoV-2 , Teicoplanin/therapeutic use , Treatment Outcome
4.
Cognit Comput ; : 1-28, 2021 Jul 15.
Article in English | MEDLINE | ID: covidwho-1320134

ABSTRACT

Patients infected with the COVID-19 virus develop severe pneumonia, which generally leads to death. Radiological evidence has demonstrated that the disease causes interstitial involvement in the lungs and lung opacities, as well as bilateral ground-glass opacities and patchy opacities. In this study, new pipeline suggestions are presented, and their performance is tested to decrease the number of false-negative (FN), false-positive (FP), and total misclassified images (FN + FP) in the diagnosis of COVID-19 (COVID-19/non-COVID-19 and COVID-19 pneumonia/other pneumonia) from CT lung images. A total of 4320 CT lung images, of which 2554 were related to COVID-19 and 1766 to non-COVID-19, were used for the test procedures in COVID-19 and non-COVID-19 classifications. Similarly, a total of 3801 CT lung images, of which 2554 were related to COVID-19 pneumonia and 1247 to other pneumonia, were used for the test procedures in COVID-19 pneumonia and other pneumonia classifications. A 24-layer convolutional neural network (CNN) architecture was used for the classification processes. Within the scope of this study, the results of two experiments were obtained by using CT lung images with and without local binary pattern (LBP) application, and sub-band images were obtained by applying dual-tree complex wavelet transform (DT-CWT) to these images. Next, new classification results were calculated from these two results by using the five pipeline approaches presented in this study. For COVID-19 and non-COVID-19 classification, the highest sensitivity, specificity, accuracy, F-1, and AUC values obtained without using pipeline approaches were 0.9676, 0.9181, 0.9456, 0.9545, and 0.9890, respectively; using pipeline approaches, the values were 0.9832, 0.9622, 0.9577, 0.9642, and 0.9923, respectively. For COVID-19 pneumonia/other pneumonia classification, the highest sensitivity, specificity, accuracy, F-1, and AUC values obtained without using pipeline approaches were 0.9615, 0.7270, 0.8846, 0.9180, and 0.9370, respectively; using pipeline approaches, the values were 0.9915, 0.8140, 0.9071, 0.9327, and 0.9615, respectively. The results of this study show that classification success can be increased by reducing the time to obtain per-image results through using the proposed pipeline approaches.

6.
Multimed Tools Appl ; 80(4): 5423-5447, 2021.
Article in English | MEDLINE | ID: covidwho-1060388

ABSTRACT

The Covid-19 virus outbreak that emerged in China at the end of 2019 caused a huge and devastating effect worldwide. In patients with severe symptoms of the disease, pneumonia develops due to Covid-19 virus. This causes intense involvement and damage in lungs. Although the emergence of the disease occurred a short time ago, many literature studies have been carried out in which these effects of the disease on the lungs were revealed by the help of lung CT imaging. In this study, 1.396 lung CT images in total (386 Covid-19 and 1.010 Non-Covid-19) were subjected to automatic classification. In this study, Convolutional Neural Network (CNN), one of the deep learning methods, was used which suggested automatic classification of CT images of lungs for early diagnosis of Covid-19 disease. In addition, k-Nearest Neighbors (k-NN) and Support Vector Machine (SVM) was used to compare the classification successes of deep learning with machine learning. Within the scope of the study, a 23-layer CNN architecture was designed and used as a classifier. Also, training and testing processes were performed for Alexnet and Mobilenetv2 CNN architectures as well. The classification results were also calculated for the case of increasing the number of images used in training for the first 23-layer CNN architecture by 5, 10, and 20 times using data augmentation methods. To reveal the effect of the change in the number of images in the training and test clusters on the results, two different training and testing processes, 2-fold and 10-fold cross-validation, were performed and the results of the study were calculated. As a result, thanks to these detailed calculations performed within the scope of the study, a comprehensive comparison of the success of the texture analysis method, machine learning, and deep learning methods in Covid-19 classification from CT images was made. The highest mean sensitivity, specificity, accuracy, F-1 score, and AUC values obtained as a result of the study were 0,9197, 0,9891, 0,9473, 0,9058, 0,9888; respectively for 2-fold cross-validation, and they were 0,9404, 0,9901, 0,9599, 0,9284, 0,9903; respectively for 10-fold cross-validation.

7.
Appl Intell (Dordr) ; 51(5): 2740-2763, 2021.
Article in English | MEDLINE | ID: covidwho-919774

ABSTRACT

In this study, which aims at early diagnosis of Covid-19 disease using X-ray images, the deep-learning approach, a state-of-the-art artificial intelligence method, was used, and automatic classification of images was performed using convolutional neural networks (CNN). In the first training-test data set used in the study, there were 230 X-ray images, of which 150 were Covid-19 and 80 were non-Covid-19, while in the second training-test data set there were 476 X-ray images, of which 150 were Covid-19 and 326 were non-Covid-19. Thus, classification results have been provided for two data sets, containing predominantly Covid-19 images and predominantly non-Covid-19 images, respectively. In the study, a 23-layer CNN architecture and a 54-layer CNN architecture were developed. Within the scope of the study, the results were obtained using chest X-ray images directly in the training-test procedures and the sub-band images obtained by applying dual tree complex wavelet transform (DT-CWT) to the above-mentioned images. The same experiments were repeated using images obtained by applying local binary pattern (LBP) to the chest X-ray images. Within the scope of the study, four new result generation pipeline algorithms having been put forward additionally, it was ensured that the experimental results were combined and the success of the study was improved. In the experiments carried out in this study, the training sessions were carried out using the k-fold cross validation method. Here the k value was chosen as 23 for the first and second training-test data sets. Considering the average highest results of the experiments performed within the scope of the study, the values of sensitivity, specificity, accuracy, F-1 score, and area under the receiver operating characteristic curve (AUC) for the first training-test data set were 0,9947, 0,9800, 0,9843, 0,9881 and 0,9990 respectively; while for the second training-test data set, they were 0,9920, 0,9939, 0,9891, 0,9828 and 0,9991; respectively. Within the scope of the study, finally, all the images were combined and the training and testing processes were repeated for a total of 556 X-ray images comprising 150 Covid-19 images and 406 non-Covid-19 images, by applying 2-fold cross. In this context, the average highest values of sensitivity, specificity, accuracy, F-1 score, and AUC for this last training-test data set were found to be 0,9760, 1,0000, 0,9906, 0,9823 and 0,9997; respectively.

SELECTION OF CITATIONS
SEARCH DETAIL